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This paper introduces a recursive particle filtering algorithm designed to filter high dimen-
sional systems with complicated non-linear and non-Gaussian effects. The method incor-
porates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte
Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel
marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower
dimensional approximate marginal distributions of the target distribution to accelerate
equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, sto-
chastic model motivated by the Kuroshio current that runs along the Japanese coast. The
results of this test indicate that the method is an attractive alternative for problems that
require the generality of a particle filter but have been inaccessible due to the limitations
of standard particle filtering strategies.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The reconstruction of unknown quantities from noisy observations is a recurrent theme in many fields. Examples include
weather prediction and forcasting, robot tracking, stochastic volatility estimation, image analysis, and many more (see [1]).
These problems motivate the need for efficient estimation procedures. As the observations arrive sequentially, any efficient
algorithm will necessarily be recursive in the sense that the estimate given the value of a newly arrived observation relies on
information calculated for the previous observation.

In the simplest case of Gaussian evolution and Gaussian observations a recursive solution to the problem is given by
the Kalman filter (see [2]). While this algorithm has been modified and extended to handle more general problems (see
[3]), it remains unsuitable for many problems with significantly non-Gaussian features (see [4]). A very general recursive
technique, particle filtering, was first suggested in [5,6]. This algorithm is extremely widely applicable, but as discussed
below, can be very inefficient. There have been many attempts to improve the efficiency of the basic particle filter (see
[1]). In this paper I introduce a recursive particle filtering algorithm designed to filter high dimensional systems with
complicated non-linear and non-Gaussian effects. The method essentially combines a particle filter with conditional path
. All rights reserved.
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sampling of the underlying stochastic process (see [7,8]). The conditional path sampling is accelerated by a combination
of the hybrid Monte Carlo method (HMC) and the parallel marginalization (PMMC) method recently introduced in
[9].

As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the bimodal
behavior of the Kuroshio current that runs along the Japanese coast. This current exhibits transformations between a small
meander during which the current remains close to the coast of Japan, and a large meander during which the current bulges
away from the coast (see Fig. 1). These states typically persist for 5–10 years, while the transitions between meanders occurs
in only a few months.

The bi-modality of this current was first studied by Yoshida in 1959 (see [12]). Since then there have been many attempts
to model this behavior. One such model was suggested by Chao in [13]. In Chao’s model the large and small meander states
are basins of attraction of the system forced by the Kyushu wedge and Izu ridge (see Fig. 3). Both meanders coexist only for
certain inflow volume conditions. Chao demonstrates that it is possible to observe the transition between meanders by
deterministically varying the inflow condition.

In the present study, the model of Chao is modified to include an additive space-time white noise. The resulting model
should not be taken seriously as a geophysical system. Here I am more focused on testing parallel marginalization and the
conditional path sampling approach than on the geophysical implications of the model. Thus the important feature of the
model is that it indeed exhibits rare transitions between the two metastable meanders (see Fig. 4).

Before the model and results are presented I discuss particle filters in general and the method that will be applied here.
After discussing the non-linear filtering problem and a modification of the particle filter the bimodal ocean current model
that will serve as a test for the algorithm is introduced. Following a description of the model numerical results are presented
along with some concluding remarks. Some details of the modified particle filtering scheme including a description of the
hybrid Monte Carlo and parallel marginalization algorithms are given in an appendix.
Fig. 1. (a) Paths in the small meander state. (b) Paths in the large meander state. ((a) and (b) reproduced from [10]. Originally adapted from [11]).



Fig. 2. Diagram of the steps in Algorithm 2. In each step the position of the hidden signal is represented by black star. In Step 1 the five samples are
represented by small grey dots which are distributed according to the posterior distribution at time j, pðxðjÞjhð1Þ;hð2Þ; . . . ;hðjÞÞ (represented by the top
thick black curve). In Step 2 the samples are evolved forward according to pj; the Markov transition density for the system. The samples produced by Step 2
are also represented by small grey dots which are distributed according to the predictive distribution at time jþ 1, pðxðjþ 1Þjhð1Þ;hð2Þ; . . . ;hðjÞÞ
(represented by the top thick black curve). In Steps 3 and 4 the samples are weighted and resampled producing (in this idealized picture) five samples with
the same position which is approximately distributed according to the posterior distribution at time jþ 1; pðxðjþ 1Þjhð1Þ;hð2Þ; . . . ;hðjþ 1ÞÞ (represented by
the top thick black curve). The five samples are all represented the large grey dot. Finally in Steps 5 and 6 the samples are ‘‘corrected” by the MCMC step.
They will again be approximately distributed according to the posterior distribution at time jþ 1; pðxðjþ 1Þjhð1Þ;hð2Þ; . . . ;hðjþ 1ÞÞ (represented by the top
thick black curve).

Fig. 3. Model geometry.
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2. Non-linear filtering methods

The algorithm applied in Section 6 is a modification of a standard particle filter. I therefore begin with a brief general
description of the filtering problem and particle filters. Consider some Markov process xðjÞ 2 Rdx governed by the transition
density
pjðxðjþ 1ÞjxðjÞÞ:
In many situations the process x models the behavior of some physical process which can only be partially observed (the
weather for example). Suppose that one takes noisy observations of the form
hðjÞ ¼ GðxðjÞ; vðjÞÞ ð1Þ
for some function G where the random variables fvðjÞg are independent and identically distributed. The process x should be
considered ‘‘hidden” and revealed only through the observations h: The goal of any filtering technique is to accurately recon-
struct x: Ideally one would like to be able to calculate modes and moments of the conditional distribution of the hidden sig-
nal x given the observations h:

Throughout this paper the symbol p will be used to represent the joint density of all of the h and x random variables. Thus
pðxðjÞjfhðlÞgj
1Þ
is the conditional density of xðjÞ given the observations hð1Þ;hð2Þ; . . . ;hðjÞ: This density is called the posterior distribution.
One might also be interested in predicting the state of x (say at time k) given only observations in the past (say at times



Fig. 4. (a) Small meander state of the approximate model, (22). (b) Large meander state of the approximate model, (22). The domain in both figures is as
depicted in Fig. 3.
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1 < � � � < j < k), or in refining an estimate of xðkÞ given past, current, and future observations (j > k). These are the prediction
and smoothing problems, respectively and their relevant conditional distributions are given by,
pðxðkÞjfhðlÞgj
1Þ;
where j < k or j > k. Here, for simplicity, the focus is on the case j ¼ k; i.e. the filtering problem.
Henceforth it is assumed that the variables hðjÞ ¼ GðxðjÞ; vðjÞÞ admit a density proportional to some function gðhðjÞ; xðjÞÞ;

i.e.
pðhðjÞjxðjÞÞ / gðhðjÞ;xðjÞÞ: ð2Þ
The function g is often easy to evaluate and gives the likelihood of a particular value of the observation hðjÞ given a value of
the state variables xðjÞ:

2.1. Particle filtering

In Section 5, a Markov process x is introduced which models the behavior of the Kuroshio current which runs along the
eastern coast of Japan. The goal will be to calculate averages of the current state of x given current and past observations
(fhg). For example at the time of observation jþ 1 one may wish to calculate the posterior average of some objective func-
tion f, i.e. one may wish to calculate the conditional expectation,
E f ðxðjþ 1ÞÞj hðlÞf gjþ1
1

h i
¼
Z

f ðxðjþ 1ÞÞp xðjþ 1Þj hðlÞf gjþ1
1

� �
dxðjþ 1Þ: ð3Þ
This subsection contains a description of the standard particle filter approximation of (3). The reader familiar with particle
filters may wish to skip this subsection and refer back to it for notation as needed.

There are several possible methods by which one might hope to approximate the expectation in (3). Perhaps the most
obvious approach is to simply compute the integral using some quadrature scheme. This approach suffers from two insur-
mountable difficulties. The first is that there is often no closed form expression for the density pðxðjþ 1ÞjfhðlÞgjþ1

1 Þ: The sec-
ond is that numerical quadrature becomes computationally impractical in more than a few dimensions. Another approach is
to generate independent samples fxiðjþ 1ÞgN

1 with respect to pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ and compute the sample mean

approximation
E½f ðxðjþ 1ÞÞjfhðlÞgjþ1
1 � �

1
N

XN

i¼1

f ðxiðjþ 1ÞÞ:
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Unfortunately in general there is no direct and efficient means of generating independent samples from pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ.

A third option is to generate samples fx0iðjþ 1ÞgN
1 from some reference density qðxðjþ 1ÞjfhðlÞgjþ1

1 Þ which can be easily sam-
pled and compute the weighted sample mean
E½f ðxðjþ 1ÞÞjfhðlÞgjþ1
1 � �

1
N

XN

i¼1

f ðx0iðjþ 1ÞÞpðx
0iðjþ 1ÞjfhðlÞgjþ1

1 Þ
qðx0iðjþ 1ÞjfhðlÞgjþ1

1 Þ
or the related estimate
E½f ðxðjþ 1ÞÞjfhðlÞgjþ1
1 � �

PN
i¼1f ðx0iðjþ 1ÞÞ pðx0iðjþ1ÞjfhðlÞgjþ1

1 Þ
qðx0iðjþ1ÞjfhðlÞgjþ1

1
ÞPN

i¼1
p
ð x0iðjþ 1ÞjfhðlÞgjþ1

1 Þqðx0iðjþ 1ÞjfhðlÞgjþ1
1 Þ

; ð4Þ
where N has been replaced by the approximation
N �
XN

i¼1

pðx0iðjþ 1ÞjfhðlÞgjþ1
1 Þ

q
ðx0iðjþ 1ÞjfhðlÞgjþ1

1 Þ:
This basic procedure is called importance sampling and is at the heart of any particle filtering method.
Particle filtering is a recursive implementation of the importance sampling approach just described. It is based on the

recursion
pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ / gðhðjþ 1Þ;xðjþ 1ÞÞpðxðjþ 1ÞjfhðlÞgj

1Þ; ð5Þ

pðxðjþ 1ÞjfhðlÞgj
1Þ ¼

Z
pjðxðjþ 1ÞjxðjÞÞpðxðjÞjfhðlÞgj

1ÞdxðjÞ; ð6Þ
(see [1]). Notice that if one sets
qðxðjþ 1ÞjfhðlÞgjþ1
1 Þ ¼ pðxðjþ 1ÞjfhðlÞgj

1Þ
then from (5),
pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ

qðxðjþ 1ÞjfhðlÞgjþ1
1 Þ
/ gðhðjÞ;xðjþ 1ÞÞ:
This implies that the approximation in expression (4) becomes
E½f ðxðjþ 1ÞÞjfhðlÞgjþ1
1 � �

PN
i¼1f ðx0iðjþ 1ÞÞgðhðjþ 1Þ;x0iðjþ 1ÞÞPN

i¼1gðhðjþ 1Þ;x0iðjþ 1ÞÞ
ð7Þ
where the samples x0iðjþ 1Þ are drawn from the predictive distribution pðxðjþ 1ÞjfhðlÞgj
1Þ.

This discussion also indicates that when it is possible to generate samples from x0iðjþ 1Þ from the predictive distribution
pðxðjþ 1ÞjfhðlÞgj

1Þ one can weight these samples by
Wiðjþ 1Þ ¼ gðhðjþ 1Þ;x0iðjþ 1ÞÞPN
i¼1gðhðjþ 1Þ;x0iðjþ 1ÞÞ
and consider the weighted samples to be distributed according to the posterior distribution pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ:

Clearly this strategy can only be used when it is possible to generate samples from pðxðjþ 1ÞjfhðlÞgj
1Þ: This issue can be

addressed with the help of expression (6). Suppose that one has somehow already managed to generate samples fxiðjÞgN
1

from the posterior distribution at time j, pðxðjÞjfhðlÞgj
1Þ. Then formula (6) implies that these samples can be used to generate

samples fx0iðjþ 1ÞgN
1 from pðxðjþ 1ÞjfhðlÞgj

1Þ simply by evolving each xiðjÞ according to the Markov transition probability
pjðxðjþ 1ÞjxðjÞÞ:

Thus if samples can be generated from the posterior distribution at time j; then by evolving these samples according to pj

one can generate samples which, after reweighting by gðhðjþ 1Þ; �Þ; are approximately drawn from the posterior distribution
at time jþ 1: To avoid waisted effort on samples with degenerate weights the weighted samples can be resampled (see Step
4 below). These steps are summarized by the following recursive algorithm first introduced in [5].

Algorithm 1 (Particle filter 1). One iteration of the standard particle filter algorithm is carried out as follows.

1. Begin with N unweighted samples xiðjÞ from pðxðjÞjfhðlÞgj
1Þ.

2. Generate N samples x0iðjþ 1Þ from pjðxðjþ 1ÞjxiðjÞÞ.
3. Evaluate the weights,
Wiðjþ 1Þ ¼ gðhðjþ 1Þ;x0iðjþ 1ÞÞPN
1 gðhðjþ 1Þ;x0kðjþ 1ÞÞ

:
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4. Generate N independent uniform random variables, fHiðjÞgN
i¼1; in ð0;1Þ: For i ¼ 1; . . . ;N let xiðjþ 1Þ ¼ x0kðjþ 1Þ

where
Xk�1

l¼1

Wkðjþ 1Þ 6 HiðjÞ <
Xk

l¼1

Wkðjþ 1Þ:
5. Return to Step 1 with jþ 1 in place of j:

Notice that Step 4 in this algorithm will produce multiple copies of the samples x0iðjþ 1Þ for which gðhðjþ 1Þ;x0iðjþ 1ÞÞ is
relatively large, and will remove samples x0iðjþ 1Þ for which gðhðjþ 1Þ;x0iðjþ 1ÞÞ is relatively small.

In Step 1 above the samples fx0iðjþ 1Þg are drawn from the predictive density pðxðjþ 1ÞjfhðlÞgj
1Þ which does not incorpo-

rate information from the current (jþ 1st) observation. They are guesses of the current state of x given all of the past obser-
vations and as such, they may over or under represent regions of space with respect to the posterior density
pðxðjþ 1ÞjfhðlÞgjþ1

1 Þ: To resolve this in Steps 2–4 the samples are reweighted and resampled according to the likelihood g:
If a sample occurs in a region deemed important by the newly arrived current observation, then the weight corresponding
to the sample will be large, while if a sample occurs in a region deemed unimportant that sample will be assigned a small
weight. Unfortunately in many cases far too many samples are generated in regions in which g is negligible. The next section
describes how the samples can be ‘‘moved” into more important regions of space.

3. Particle filter with MCMC step

The particle filtering algorithm is a sequential importance sampling method and as such is subject to the limitations of
any importance sampling algorithm. In particular, the speed of convergence of an importance sampling method is greatly
affected by the degree to which the reference density (in this case pðxðjþ 1ÞjfhðlÞgj

1Þ) approximates the target density (in
this case pðxðjþ 1ÞjfhðlÞgjþ1

1 Þ). In problems that exhibit rare transitions between multiple metastable states this problem
is particularly acute. Suppose that between two observations the hidden signal makes a transition from one metastable state
to another. If at the time of the first observation, all particles are in the first metastable state, then at best only a few particles
will make the transition to the new metastable state. Therefore, at the time of the next observation, when the new weights
are calculated, almost all of the particles will receive negligible weight and will be discarded at the next resampling. In other
words, the densities pðxðjþ 1ÞjfhðlÞgj

1Þ and pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ are not sufficiently close and as a result most of the random

variables Wiðjþ 1Þ will be negligible. This problem is common in importance sampling, but is compounded here because of
the sequential structure of the particle filtering procedure.

There are other methods which do not suffer from this deficiency. These methods usually approximate the predictive den-
sity pðxðjþ 1ÞjfhðlÞgj

1Þ by a simpler density (for example, a Gaussian), p0jðxðjþ 1ÞjfhðlÞgj
1Þ, and analytically or numerically

evaluate the mean and variance of the density,
p0jðxðjþ 1ÞjfhðlÞgjþ1
1 Þ / gðhðjþ 1Þ;xðjþ 1ÞÞp0jðxðjþ 1ÞjfhðlÞgj

1Þ;
which can then also be approximated by a Gaussian (see [3]). The advantage of such a method is that, unlike an empirical
approximation to pðxðjþ 1ÞjfhðlÞgj

1Þ, the approximation p0jðxðjþ 1ÞjfhðlÞgj
1Þ usually is not compactly supported and is there-

fore positive in regions where gðhðjþ 1Þ;xðjþ 1ÞÞ is significant. The disadvantage of these methods is that because of the
approximation of the predictive distribution by a simple density, they behave poorly on problems where non-linear or
non-Gaussian effects are important.

In this section, a Markov chain Monte Carlo step is appended to Algorithm 1 which will move samples away from statis-
tically insignificant regions. This idea has been proposed by several authors (see for example [14]). To see how this might be
effective consider a system with multiple metastable states. As already mentioned, if the current state and the next state of
the hidden signal are in different metastable states then all or most of the samples generated in Step 2 of Algorithm 1 will be
in statistically insignificant regions. If one is lucky and one or two samples end up near the hidden signal then it is likely that
all other samples will be discarded in Step 4 and the resulting collection of samples will be very degenerate. In this case the
MCMC step will move these samples independently and help to decrease this degeneracy. However if as is more likely, none
of the samples are near the state of the hidden signal then after Step 4 the collection of samples will not only be degenerate
but will also be far from the state of the hidden signal. In this case the MCMC step will move the collection of samples closer
to the metastable state containing the hidden signal. This scenario is depicted by the (somewhat idealized) diagrammatic
description in Fig. 2 of the steps in Algorithm 2. Of course there are many possible ways to achieve these objectives, but
it is crucial that any procedure preserve the target measure,
pðxðjþ 1ÞjfhðlÞgjþ1
1 Þ:
As the discussion below reveals, Algorithm 2 has this property.
Before the MCMC step can be discussed Step 4 in Algorithm 1 requires a minor modification. The new Step 4 will resample

the pairs fðxiðjÞ;x0iðjþ 1ÞÞgN
1 instead of simply the fx0iðjþ 1ÞgN

1 : The result will be multiple copies of the pairs ðxiðjÞ;x0iðjþ 1ÞÞ
for which gðhðjþ 1Þ;x0iðjþ 1ÞÞ is relatively large, and fewer of the pairs ðxiðjÞ;x0iðjþ 1ÞÞ for which gðhðjþ 1Þ;x0iðjþ 1ÞÞ is rel-
atively small.
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40 Generate N independent uniform random variables, fHiðjÞgN
i¼1; in ð0;1Þ. For i ¼ 1; . . . ;N let

ðx�iðjÞ;xiðjþ 1ÞÞ ¼ ðxkðjÞ;x0kðjþ 1ÞÞ where
Xk�1

l¼1

Wkðjþ 1Þ 6 HiðjÞ <
Xk

l¼1

Wkðjþ 1Þ:
Consider the consequence of this modification. Suppose that one has samples fxiðjÞgN
1 drawn from the posterior distribution

at time j; pðxðjÞjfhðlÞgj
1Þ.

Given each xiðjÞ; the samples x0iðjþ 1Þ are drawn from pjðxðjþ 1ÞjxiðjÞÞ. Thus the joint distribution of the pairs
fðxiðjÞ;x0iðjþ 1ÞÞgN

1 is
pjðxðjþ 1ÞjxðjÞÞpðxðjÞjfhðlÞgj
1Þ ¼ pðxðjÞ;xðjþ 1ÞjfhðlÞgj

1Þ:
Thus when these samples are weighted by Wiðjþ 1Þ / pðhðjþ 1Þjx0iðjþ 1ÞÞ they become approximately distributed accord-
ing to the density
pðhðjþ 1Þjxðjþ 1ÞÞpðxðjÞ;xðjþ 1ÞjfhðlÞgj
1ÞR

pðhðjþ 1Þjxðjþ 1ÞÞpðxðjÞ; xðjþ 1ÞjfhðlÞgj
1ÞdxðjÞdxðjþ 1Þ

;

which, by Bayes’ rule, is easily seen to be
pðxðjÞ; xðjþ 1ÞjfhðlÞgjþ1
1 Þ: ð8Þ
In particular, the samples xiðjþ 1Þ generated by the resampling in Step 40 will be approximately drawn from the marginal
distribution
Z

pðxðjÞ; xðjþ 1ÞjfhðlÞgjþ1
1 ÞdxðjÞ ¼ pðxðjþ 1ÞjfhðlÞgjþ1

1 Þ;
which is the posterior distribution at time jþ 1; and the samples x�iðjÞ are approximately drawn from the marginal
distribution
Z

pðxðjÞ; xðjþ 1ÞjfhðlÞgjþ1
1 Þdxðjþ 1Þ ¼ pðxðjÞjfhðlÞgjþ1

1 Þ:
Now notice that the joint density in (8) can be factored as
pðxðjÞ; xðjþ 1ÞjfhðlÞgjþ1
1 Þ ¼ pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞpðxðjÞjfhðlÞgjþ1

1 Þ
so that given x�iðjÞ; xiðjþ 1Þ is an approximate sample from
pðxðjþ 1Þjx�iðjÞ;hðjþ 1ÞÞ:
Suppose that Pðyðjþ 1Þjxðjþ 1ÞÞ is a Markov chain transition kernel that preserves the density
pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ;
i.e..
pðyðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ ¼
Z

Pðyðjþ 1Þjxðjþ 1ÞÞ � pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞdxðjþ 1Þ:
Then evolving the samples xiðjþ 1Þ according to Pðyðjþ 1Þjxðjþ 1ÞÞ will yield new samples which are still approximately
drawn from pðxðjþ 1Þjx�iðjÞ;hðjþ 1ÞÞ. Through this mechanism one can attempt to improve the samples generated by Algo-
rithm 1. Indeed, if the Markov chain is Harris-recurrent and aperiodic (see [15]), then the resulting samples will asymptot-
ically be drawn from pðxðjþ 1Þjx�iðjÞ;hðjþ 1ÞÞ: Thus if Yi;K is the result of K iterations of P then as K !1; the only error in the
procedure will be due to the fact that x�iðjÞ is not an exact sample from pðxðjÞjfhðlÞgjþ1

1 Þ: In fact, in this case the convergence is
monotonic in the total variation norm so that every step of the Markov chain improves the samples in this sense (see [15]).
The resulting algorithm is,

Algorithm 2 (Particle filter with MCMC). One iteration of the particle filter algorithm with MCMC correction step is carried
out as follows.

1. Begin with N unweighted samples xiðjÞ from pðxðjÞjfhðlÞgj
1Þ:

2. Generate N samplesx0iðjþ 1Þ from pjðxðjþ 1ÞjfxðjÞ ¼ xiðjÞgÞ:
3. Evaluate the weights,
Wiðjþ 1Þ ¼ gðhðjþ 1Þ;x0iðjþ 1ÞÞPN
1 gðhðjþ 1Þ;x0kðjþ 1ÞÞ

:
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4. Generate N independent uniform random variables, fHiðjÞgN
i¼1; in ð0;1Þ: For i ¼ 1; . . . ;N let

ðx�iðjÞ;xi;0ðjþ 1ÞÞ ¼ ðxkðjÞ;x0kðjþ 1ÞÞ where
Xk�1

l¼1

Wkðjþ 1Þ 6 HiðjÞ <
Xk

l¼1

Wkðjþ 1Þ:
5. For each i, construct a Markov chain fYi;ngwith initial values
Yi;0 ¼ xi;0ðjþ 1Þ
and stationary distribution
pðxðjþ 1ÞjfxðjÞ ¼ x�iðjÞg;hðjþ 1ÞÞ / pjðxðjþ 1ÞjfxðjÞ ¼ x�iðjÞgÞgðhðjþ 1Þ;xðjþ 1ÞÞ:
6. Let xiðjþ 1Þ ¼ Yi;K for each i:
7. Return to Step 1 with jþ 1 in place of j:

In general Step 5 of Algorithm 2 will require that one can evaluate the density pjðxðjþ 1ÞjxðjÞÞ at least up to a normali-
zation constant. In many cases this is not possible. The next section addresses this issue.

4. Continuous time problems

In the discussion so far it has been assumed that the hidden signal x is a discrete time process which is observed at each
time step. In the problem studied in the next section it is assumed that the underlying Markov process xðjÞ is a discrete sam-
pling at observation times s0 < s1 < s2 < � � � of an approximation to a stochastic differential equation
dxðtÞ ¼ FðxðtÞÞdt þ rdBðtÞ; ð9Þ
where BðtÞ is a dx-dimensional Brownian motion. This introduces several complications.
In this context the transition density pjðxðjþ 1ÞjxðjÞÞ is the density of a transition from position xðjÞ at time sj to position

xðjþ 1Þ at time sjþ1: In general it is not possible to sample directly from pjðxðjþ 1ÞjxðjÞÞ and one must use some numerical
approximation scheme. This is accomplished by approximating the probability density pjðxðjþ 1ÞjxðjÞÞ by a product of tran-
sition densities over shorter time intervals (say of length D). These new transition densities, pj

D; describe the probability of a
transition from some position xðj;nÞ at time sj þ nD to a new position xðj;nþ 1Þ at time sj þ ðnþ 1ÞD where 0 6 n 6 Nj and
sj þ NjD ¼ sjþ1:

In fact it is useful to simply assume that the hidden signal evolves according to these approximate transition densities pj
D;

and replace the true transition density by
pjðxðjþ 1ÞjxðjÞÞ ¼
Z YNj�1

n¼0

pj
Dðxðj;nþ 1Þjxðj; nÞÞ

 ! YNj�1

n¼1

dxðj; nÞ: ð10Þ
For example, one might choose to approximate (9) using the familiar Euler discretization,
xðj;nþ 1Þ ¼ xðj;nÞ þ Fðxðj;nÞÞDþ r
ffiffiffiffi
D
p

nðj;nÞ; 0 6 n < Nj; xðj;0Þ ¼ xðjÞ; ð11Þ
where the nðj;nÞ are independent Gaussian random variables with mean 0 and identity covariance. In this case,
pj
Dðxðj;nþ 1Þjxðj;nÞÞ / exp � xðj;nþ 1Þ � xðj;nÞ � Fðxðj;nÞÞDð Þ2

2
r2D

 !
: ð12Þ
While formula (10) defines a transition density for the Markov process x which can be easily sampled (via (11)), one can-
not easily evaluate pjðxðjþ 1ÞjxðjÞÞ: This is an important requirement of the MCMC step in Algorithm 2. To see this observe
that the Markov chain constructed in Step 5 of Algorithm 2 must preserve the distribution
pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ / pjðxðjþ 1ÞjxðjÞÞgðhðjþ 1Þ; xðjþ 1ÞÞ: ð13Þ
In general constructing such a chain will require that (13) can be evaluated at least up to a normalization constant. Of course
this requires that pjðxðjþ 1ÞjxðjÞÞ can be evaluated at least up to a normalization constant.

Two difficulties arise when one attempts to evaluate pjðxðjþ 1ÞjxðjÞÞ using formula (10). The first and most obvious is that
the integral in (10) cannot be easily evaluated. This problem can be avoided by constructing a larger Markov process in Step 5
of Algorithm 2 which preserves the joint conditional density of the entire path xðj;1Þ;xðj;2Þ; . . . ;xðjþ 1Þ
pðxðj;1Þ;xðj;2Þ; . . . ; xðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ /
YNj�1

n¼0

pj
Dðxðj;nþ 1Þjxðj; nÞÞ

 !
gðhðjþ 1Þ; xðjþ 1ÞÞ ð14Þ
instead of the joint conditional density of xðjþ 1Þ alone (13). Suppose, for example, that



4320 J. Weare / Journal of Computational Physics 228 (2009) 4312–4331
Pðyðj;1Þ; yðj;2Þ; . . . ; yðjþ 1Þjxðj;1Þ;xðj;2Þ; . . . ;xðjþ 1ÞÞ
is any transition density which preserves (14), i.e.
pðyðj;1Þ; yðj;2Þ; . . . ; yðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ ¼
Z

Pðyðj;1Þ; yðj;2Þ; . . . ; yðjþ 1Þjxðj;1Þ;xðj;2Þ; . . . ;xðjþ 1ÞÞ

� pðxðj;1Þ;xðj;2Þ; . . . ;xðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ � dxðj;1Þdxðj;2Þ � � �dxðjþ 1Þ:
This implies that if the initial path xðj;1Þ;xðj;2Þ; . . . ;xðjþ 1Þ is drawn from (14) then the sample yðjþ 1Þ generated by P will
be distributed according to
Z

pðxðj;1Þ; xðj;2Þ; . . . ;xðjþ 1ÞjxðjÞ;hðjþ 1ÞÞdxðj;1Þdxðj;2Þ � � �dxðj;Nj � 1Þ ¼ pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ:
The second difficulty presented by formula (10) that must be overcome in order to construct the Markov chain in Steps 5 and
6 of Algorithm 2 is that for many discretizations of (9) the resulting densities pj

Dðxðj;nþ 1Þjxðj;nÞÞ cannot be efficiently eval-
uated. However, in many cases, the approximation chosen will depend on a collection of simple random variables whose
joint distribution is known. For example, consider the explicit trapezoidal discretization
xðj;nþ 1Þ ¼ xðj;nÞ þ Fðxðj;nÞ þ DFðxðj; nÞÞ þ r
ffiffiffiffi
D
p

nðj; nÞÞ þ Fðxðj;nÞÞ
� �D

2
þ r

ffiffiffiffi
D
p

nðj;nÞ; ð15Þ
where as before, the nðj;nÞ are independent Gaussian random variables with mean 0 and identity covariance. This discret-
ization will be used in the next section to approximate the flow of the Kuroshio current and yields a representation of pj

of the form (10). However, in this case it is difficult to evaluate the resulting factors pj
Dðxðj;nþ 1Þjxðj;nÞÞ:

Of course for each value of xðjÞ and each sequence of noise variables
nðjÞ ¼ nðj; 0Þ; . . . ; nðj;Nj � 1Þ
there is a unique value of xðjþ 1Þ ¼ xðj;NjÞ determined by (15). This value will be denoted by xDðjþ 1; nðjÞÞ: One could just as
easily express pjðxðjþ 1ÞjxðjÞÞ in terms of the random variables nðj;nÞ in (15) instead of the xðj;nÞ; so that expression (10)
becomes
pjðxðjþ 1ÞjxðjÞÞ /
Z

exp �
XNj�1

n¼0

nðj;nÞTnðj;nÞ
2

 !
dðxDðjþ 1; nÞ � xðjþ 1ÞÞ � dnðj;0Þ . . . ; dnðj;Nj � 1Þ; ð16Þ
where the symbol d in this expression represents the Dirac delta function.
Exactly as before, to avoid computing the integral in (16) one can construct a Markov chain in Steps 5 and 6 of Algorithm 2

which preserves the joint conditional density
pðnðj;0Þ; . . . ; nðj;Nj � 1ÞjxðjÞ;hðjþ 1ÞÞ / exp �
XNj�1

n¼0

nðj;nÞTnðj;nÞ
2

 !
gðhðjþ 1Þ;xDðjþ 1; nÞÞ
instead of pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ: If one begins with a sample of the path nðj;0Þ; . . . ; nðj;Nj � 1Þ which is drawn from
pðnðj; 0Þ; . . . ; nðj;Nj � 1ÞjxðjÞ;hðjþ 1ÞÞ then each sample generated by such a Markov chain would correspond to a value
xDðjþ 1; nÞ which is distributed according to pðxðjþ 1ÞjxðjÞ;hðjþ 1ÞÞ:

These modifications of Algorithm 2 are summarized in the following algorithm.

Algorithm 3 (Particle filter with MCMC for SDE with discrete observations). One iteration of the particle filter with an MCMC
correction for a continuous time Markov process is carried out as follows.

1. Begin with N unweighted samples xiðjÞ from pðxðjÞjfhðlÞgj
1Þ:

2. For each i generate a sample ðniðj; 0Þ; . . . ; niðj;Nj � 1ÞÞ from the joint density proportional to
exp �
XNj�1

n¼0

nðj;nÞTnðj;nÞ
2

 !
:

3. Evaluate the weights,
Wiðjþ 1Þ ¼ gðhðjþ 1Þ; xDðjþ 1; niÞÞPN
1

gðhðjþ 1Þ; xDðjþ 1; nkÞÞ
:

4. Generate N independent uniform random variables, fHðjÞgN
i¼1; in ð0;1Þ: For i ¼ 1; . . . ;N let
ðx�iðjÞ; ni;0ðj;0Þ . . . ; ni;0ðj;Nj � 1ÞÞ ¼ ðxkðjÞ; nkðj;0Þ; . . . ; nkðj;NjÞÞ;



J. Weare / Journal of Computational Physics 228 (2009) 4312–4331 4321
where
Xk�1

l¼1

Wkðjþ 1Þ 6 HðjÞ <
Xk

l¼1

Wkðjþ 1Þ:
5. For each i; construct a Markov chain fYi;ng with initial value
Yi;0 ¼ ðni;0ðj; 0Þ; . . . ; ni;0ðj;Nj � 1ÞÞ
and stationary distribution
pðnðj;0Þ; . . . ; nðj;Nj � 1ÞjfxðjÞ ¼ x�iðjÞg;hðjþ 1ÞÞ / exp �
XNj�1

n¼0

nðj;nÞTnðj; nÞ
2

 !
gðhðjþ 1Þ; xDðjþ 1; nÞÞÞ:
6. Letxiðjþ 1Þ ¼ xDðjþ 1;Yi;KÞ:
7. Return to Step 1 with jþ 1 in place of j:
The implementation and choice of MCMC method in Steps 5 and 6 of Algorithms 2 and 3 are, of course, key to the success
or failure of this filtering strategy. This point cannot be overemphasized. It is certain that any naive choice of an MCMC meth-
od will produce a filter that is extremely expensive and/or ineffective. The MCMC method chosen for the computations re-
ported on in Section 6 is a combination of the hybrid Monte Carlo method (HMC) and parallel marginalization (PMMC). In
order to move on to a description of the model problem and the results of the numerical tests, a discussion of these tech-
niques is postponed until Appendix A.

5. A bimodal ocean current model

The filtering approach outlined above will be tested on a discrete stochastic system obtained informally from the stochas-
tic partial differential equation,
@

@t
x ¼ �r � ðux; vxÞ � f

fx

f
� hx

h

� �
u� f

fy

f
� hy

h

� �
v þ mDxþ rx ð17Þ
in the domain D of Fig. 3, where xðt; x; yÞ is a white noise in space and time with covariance
E½rwðt � t0; x� x0; y� y0Þrwðt � t0; x� x0; y� y0Þ� ¼ 6� 10�13dðt � t0Þdðx� x0Þdðy� y0Þs�4 and u and v are velocities found from
xðt; x; yÞ: This equation should not be strictly interpreted. Indeed the behavior of solutions, or even the sense in which they
might exist, is not the purpose of the current study. I am more interested in the discrete system obtained informally from this
system. I do not assume that my discretization converges in any meaningful way to an exact trajectory of (17). However, as I
show later, the discrete system that emerges demonstrates a bimodal behavior that is qualitatively similar to that of the
Kuroshio current. This characteristic, along with its size and complexity, make the resulting discrete system an interesting
validation for the filtering technique advocated in this paper.

The system (17) is a stochastic perturbation of the barotropic vorticity equation shown by Chao in [13] to model the large
and small meander states exhibited by the Kuroshio current (see Fig. 4). It The coordinates x; y are rotated 20� counter-clock-
wise from North–South. The viscosity is set to m ¼ 0:8� 107 cm2 s�1 and the noise parameter r is. The Coriolis parameter is
given by
f ¼ f0 þ fxxþ fyy;
where
fx ¼ b sinð20degÞ and f y ¼ b cosð20degÞ
and b and f0 are given by b ¼ 2� 10�13 cm�1 s�1 and f0 ¼ 7� 10�5 s�1. The function hðx; yÞ is the water depth and is 1000 m
away from the two bumps that model the Izu Ridge. The northern bump is defined by
hNðx; yÞ ¼ 500 m cos
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1410 kmÞ2 þ ðy� 1020 kmÞ2

q
90 km

0
@

1
A

for
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1410 kmÞ2 þ ðy� 1020 kmÞ2

q
6 90 km
and the southern bump is defined by
hSðx; yÞ ¼ 500 m cos
p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0

120 km

� �2

þ y0

90 km

� �2
s0

@
1
A
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for
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0

120 km

� �2

þ y0

90 km

� �2
s

6 1;
where
x0 ¼ ðx� 1410 kmÞ þ ðy� 780 kmÞffiffiffi
2
p

and
y0 ¼ ðx� 1410 kmÞ � ðy� 780 kmÞffiffiffi
2
p :
The horizontal velocities u and v satisfy
ðhu;hvÞ ¼ ð�wy;wxÞ;
where the volume transport streamfunction w solves
x ¼ @

@x
1
h

wx

� �
þ @

@y
1
h

wy

� �
:

The boundary conditions are
I w ¼ 0; x ¼ 0; at y ¼ 0;
II w ¼ �33 Sv; wn ¼ 0; along the northern boundary;
III wx ¼ 0; wxx ¼ 0; at x ¼ 0;
IX w ¼ KðyÞ; wxx ¼ 0; at x ¼ 2220 km;
where
KðyÞ ¼ 0 for y 6 870 km;
and
KðyÞ ¼ �33 Sv y� 870 km
150 km

for y > 870 km:
In the above formulas an Sv is a Sverdrup and represents a volume transport of 106 m3 s�1:

Now let Dx ¼ 30 km denote the spatial mesh size which is the same in both the x and y directions. For any function g on D
define
gkþax ;lþay
¼ gððkþ axÞDx; ðlþ ayÞDxÞ
for ax;ay 2 ½�1;1�: Define the operators
dxg ¼
gkþ1=2;l � gk�1=2;l

Dx
dyg ¼

gk;lþ1=2 � gk;l�1=2

Dx
;

lxg ¼
gkþ1=2;l þ gk�1=2;l

2
; lyg ¼

gk;lþ1=2 þ gk;l�1=2

2
;

D0
x ¼ lxdx; D0

y ¼ lydy;
and
L0 ¼ dx
dx

h

� �
þ dy

dy

h

� �
: ð18Þ
First, (17) is discretized in space using a simple centered difference scheme which involves only values of x at points
ðkDx; jDxÞ: After replacing x by its restriction to these points the system becomes a set of ordinary stochastic differential
equations,
dxk;mðtÞ ¼ Fk;mðxðtÞÞdt þ 1
Dx

rdBk;mðtÞ; ð19Þ
where
Fk;mðxðtÞÞ ¼ �D0
x ðuk;jxk;jÞ � D0

yðvk;mxk;mÞ � fk;m
fx

fk;m
þ D0

x
1
h

� �� �
uk;m � fk;m

fy

fk;m
þ D0

y
1
h

� �� �
vk;m þ mðdxdx þ dydyÞxk;m; ð20Þ
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where w solves
Fig. 5.
souther
L0w ¼ x; ð21Þ
and
uk;m ¼ �
D0

ywk;m

h
; vk;m ¼

D0
xwk;m

h
:

The Bk;m are independent Brownian motions. Consistent with the previous sections, xðjÞ denotes the solution of (22) at the
time of jth observation sj; and xðj;nÞ denotes the solution at the nth time step after the jth observation, sj þ nD:

These stochastic ordinary differential equations cannot be solved explicitly and therefore require numerical solution.
Here the spatially discretized system (19) is discretized in time as
xk;mðj;nþ 1Þ ¼ xk;mðj;nÞ þ ðFk;mð�xk;mðj; nþ 1ÞÞ þ Fk;mðxk;mðj;nÞÞÞ
D
2
þ

ffiffiffiffi
D
p

Dx
rnk;mðj;nÞ; ð22Þ
where
�xk;mðj;nþ 1Þ ¼ xk;mðj;nÞ þ Fk;mðxk;mðj;nÞÞDþ
ffiffiffiffi
D
p

Dx
rnk;mðj;nÞ;
and for each k; m; j; and n; nk;mðj;nÞ is an independent Gaussian random variable with mean 0 and variance 1. The resulting
method is adequate for the relatively low Reynolds number flow considered here. A Crank Nicholson type scheme was not
applied to the linear part of the equation because the stiffness of the system is not dominated by the diffusion term at the
level of discretization used here.

The discrete system above exhibits two metastable states that are qualitatively similar to the small and large meanders of
the actual Kuroshio current. Fig. 4 shows typical states in both of these meanders. They were found by varying the northern
boundary condition as in [13]. The noise parameter in (22) (r) was set to 0 for the purposes of generating Fig. 4.

Let ðx�; y�Þ denote the point in D that is 990 km from the western boundary and 860 km from the southern boundary. This
point is pictured in Fig. 3. Let ðk�;m�Þ denote the location of this point on the discrete grid. The bimodality of the system is
evident in Fig. 5 which shows a long trajectory of the system projected onto the variable wk� ;m� : The state for which
wk� ;m� � 15 Sv roughly corresponds to the small meander and the state for which wk� ;m� � �20 Sv roughly corresponds to
the large meander. As can also be seen in Fig. 5 the discrete stochastic system tends to remain in each of its meanders
for roughly 10 years. Transitions between the two meanders usually occur in a time span of a few months.

The observation process is given by
hðjÞ ¼ wðjÞk� ;m� þ vðjÞ vðjÞ � l; ð23Þ
Time series of approximation to wðx�; y�Þ where ðx�; y�Þ denotes the point in D that is 990 km from the western boundary and 860 km from the
n boundary. Notice the transitions between a metastable state near 15 Sv and one near �20 Sv :



4324 J. Weare / Journal of Computational Physics 228 (2009) 4312–4331
where
Fig. 6.
the we
lðxÞ ¼ exp � x2

200

� �
:

Thus the discrete vorticity process xðj;nÞ is observed through the value of the discrete volume transport process wðjÞ at the
single point ðk�;m�Þ:

6. Numerical results and discussion

In this section, I present the results of an application of Algorithm 3 to a filtering problem for the discrete system (22)
given above with observation model (23). The MCMC method chosen for Step 5 of Algorithm 3 is a combination of hybrid
Monte Carlo and parallel marginalization as in Algorithm 6 in Appendix A.3. The choice of hybrid Monte Carlo is motivated
in part by the presence in (20) of the velocities u and v which depend on the volume transport w: In light of Eq. (21), if one
makes even a 1 � d perturbation, say xk;mðj;nÞ þ �; then in order to calculate p at the new state the drift term, (20), must be
recomputed for all components. This fact virtually rules out any method that cannot maintain reasonable acceptance rates
while making global proposals (perturbations of xk;mðj;nÞ for all ðk;mÞ at once). Hybrid Monte Carlo is capable of making such
global proposals with high acceptance rates.

The other motivating factor in the choice of hybrid Monte Carlo is the use of the change of variables from the position
variables xðj; �Þ to the noise variables nðj; �Þ discussed in Section 4. Suppose a Metropolis-Hastings MCMC proposal density
suggests perturbations of only one of the noise terms nðj;nÞ at a time, i.e. perturbations of the form
nðj;nÞ ! nðj;nÞ þ � and nðj;mÞ ! nðj;mÞ for m – n:
Then, in order to evaluate the acceptance probability for this proposal, the discrete system (22) must be evolved from time
step ðj;nÞ to time step ðj;NjÞ; making evaluation of the acceptance prohibitively expensive. The hybrid Monte Carlo method
avoids this difficulty by perturbing all increments in one step. The HMC proposals also take into account the effect of the
observation on each increment. The use of hybrid Monte Carlo for the path smoothing problem has been suggested in
[7,8]. The change of variables to the noise variables can be thought of as a very simple preconditioning of the HMC sampling
(see [16]). The system is easier to sample in the new variables because the correlations between the noise variables given the
observations are much weaker than the correlations between neighboring time steps of x: In fact, due to this precondition-
ing, the effect of incorporating parallel marginalization is not nearly as pronounced as observed in [9]. Nevertheless, in re-
peated runs on this test problem, the addition of the PMMC step seems to reduce the equilibration time (measured in CPU
time) of the Markov chain in Steps 5 and 6 of Algorithm 3 by a factor between 2 and 3.

In this test, the observations are fixed at hðjÞ ¼ 19:2918 Sv for all j which is the value of wðx�; y�Þ for the small meander
state shown in Fig. 4. The system is started in the large meander state shown in Fig. 4. These choices test the ability of the
filter to adjust to a sudden change of the system from one metastable state to another. The time step Dj is chosen to be
0:00526 days and the observation times are s1 ¼ 2:63 days, s2 ¼ 2ð2:63Þ ¼ 5:26 days, . . . ; s10 ¼ 26:3 days.
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stern boundary and 860 m from the southern boundary.
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The performance of Algorithm 3 with HMC/PMMC on this test problem is compared to the performance of a standard par-
ticle filter (see Algorithm 1). For other applications of particle filters to models related to geophysical problems see, for exam-
ple, [17,18]. Fig. 6 shows the paths of the estimators generated by Algorithm 3 with N ¼ 10 particles and by a standard
particle filter with N ¼ 1000 particles. The number of parallel marginalization levels (Lþ 1 in Algorithms refpm1 and 6) is
chosen to be 4 and the number of MCMC iterations, K; is 3. The acceptance rates for HMC were higher at the higher levels
(l in Algorithms 5 and 6) for a given step size d and number of steps in the proposal mapping ðudÞ described in Section A.1.
However, it proved much more efficient to use more iterations of ðudÞ at the higher levels. For this reason the number or
iterations of the proposal mapping ud (M) is set to 1, 2, 4, and 8 on levels 0,1,2, and 3 respectively. This results in similar
HMC acceptance rates at all levels as well as similar cost per HMC iteration.

As programed, Algorithm 3 requires about 100 times more work per particle than the standard particle filter (when the
state of all samples at each time between the current and future observation are stored). However, as is evident in Fig. 6,
Algorithm 3 requires many fewer observations to adjust to the new state of the system. This is reinforced by the results
shown in Fig. 7. This figure shows the weighted empirical densities of wðx�; y�Þ at each observation time generated by the
two algorithms. Clearly the weighted empirical density generated by the standard particle filter rarely has more than one
statistically significant sample. Therefore, despite the relatively low number of particles used in Algorithm 3, it offers a high-
er resolution. These results indicate that the particle filter requires many more particles (than the 1000 used in this run) to
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Fig. 7. (a) Weighted empirical distribution of wðx� ; y�Þ at each observation time generated by the standard particle filter with 1000 particles. (b) Weighted
empirical distribution of wðx�; y�Þ at each observation time generated by Algorithm 3 with 10 particles.
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give an accurate estimate of the state of the system and would therefore be much more expensive than Algorithm 3. In fact in
tests with as many as 4000 particles the performance of the standard particle filter did not improve appreciably. This is
promising since like a particle filter, Algorithm 3 is very general and can be applied to problems with significant non-linear
and non-Gaussian effects. It is interesting to note that while Algorithm 3 seems to have converged, neither method produces
an estimate of the state of the full system which is consistent with the small meander state. This indicates that the value of
the single variable wðx�; y�Þ is not enough to fully specify the mode of the full system.

It is likely that the method could be implemented much more efficiently. For example, the force appearing in the HMC
step is very expensive to evaluate exactly. A possible solution to this problem is offered by the surrogate transition method
described in [19]. However, the increased cost due to the MCMC step indicates that this algorithm is best suited for problems
with posterior distributions which can be effectively represented by a small number of samples, but which nonetheless re-
quire a large number of particles using a standard approach.

Acknowledgments

I am grateful to Professor A. Chorin for his guidance during this research, which was carried out while I was a Ph.D. stu-
dent at U. C. Berkeley. I would also like to thank Professor O. Hald, Professor P. Stinis, and Dr. Xuemin Tu, for their very help-
ful comments. This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 and National Science Foundation grant
DMS0410110 as well as by the Applied Mathematical Sciences Program of the U.S. Department of Energy under Contract
DEFG0200ER25053.
Appendix A. Parallel marginalization and hybrid Monte Carlo

There are many choices for the Markov chain Monte Carlo method in Steps 5 and 6 of Algorithms 2 and 3. A particularly
effective choice seems to be the combination of parallel marginalization (PMMC) and hybrid Monte Carlo (HMC) employed in
the numerical study discussed in Section 6. The next two subsections contain a brief description of both PMMC and HMC in
the general context of constructing a Markov chain to sample from some target density p0. In the setting of Section 4 the
target density p0 is the conditional density,
p0ðnðj; 0Þ; . . . ; nðj;Nj � 1ÞÞ ¼ pðnðj;0Þ; . . . ; nðj;Nj � 1ÞjxðjÞ;hðjþ 1ÞÞ

/ exp �
XNj�1

n¼0

nðj; nÞTnðj;nÞ
2

 !
gðhðjþ 1Þ; xDðjþ 1; nÞÞÞ
as required in Step 5 of Algorithm 3. Section A.3 below focuses on the implementation of HMC and PMMC in this setting.

A.1. Hybrid Monte Carlo

The hybrid Monte Carlo (HMC) scheme is a variation of the Metropolis Hastings scheme (see [20]) and was first intro-
duced by [21] as a way to make large Metropolis-Hastings proposals without suffering low acceptance rates. Note that
the target density can be written p0ðxÞ ¼ expð�VðxÞÞ where VðxÞ ¼ � logðp0ðxÞÞ: The first step is to augment the system
by a vector of random variables, r 2 Rd; such that the joint density of x and r is given by,
exp �Hðx; rÞð Þ
Z

;

where
Hðx; rÞ ¼VðxÞ þKðrÞ
for some potential function KðrÞ and
Z ¼
Z

e�KðrÞdr:
Notice that the marginal distribution of the x variables is p0ðxÞ; i.e.
Z
exp �Hðx; rÞð Þ

Z
dr ¼ p0ðxÞ:
Recall that the solution to the Hamiltonian system,
dx
dt
¼ rrHðx; rÞ ¼ rKðrÞ;

dr
dt
¼ �rxHðx; rÞ ¼ �rVðxÞ

ð24Þ



J. Weare / Journal of Computational Physics 228 (2009) 4312–4331 4327
preserves the value of Hðx; rÞ; and thus the density expð�Hðx;rÞÞ
Z

is stationary for this system of ordinary differential equations.
Of course the fact that the value of H is conserved along trajectories of (24) also implies that these trajectories cannot visit
all configurations. However, the properties of (24) can be used to define a viable Markov chain Monte Carlo method to sam-
ple p0ðxÞ.

For simplicity choose,
KðrÞ ¼ rT r
2
:

Define the evolution map ud : Rd � Rd ! Rd � Rd by ud ¼ ðux
dðx; rÞ;ur

dðx; rÞÞ where
ux
dðx; rÞ ¼ xþ dr� d2

2
rVðxÞ;

ur
dðx; rÞ ¼ r� d

2
ðrVðxÞ þ rVðux

dðx; rÞÞ:
This is the velocity Verlet discretization of the Hamiltonian system (see [22,23]). The important features of this discretization
are that it is time reversible and area preserving. The hybrid Monte Carlo step from the point Yn ¼ x consist of first gener-
ating an independent sample of r from the density proportional to e�KðrÞ and then evolving the point ðx; rÞ under ud for M
steps to generate the point ðy; r0Þ ¼ ðudÞ

Mðx; rÞ: We then set Ynþ1 ¼ y with probability
A ¼ min 1;
p0ðy; r0Þ
p0ðx; rÞ

� �
;

and Ynþ1 ¼ x with probability 1� A: The properties of ud imply that p0ðxÞ is the stationary distribution for Yn (see [20]). By
decreasing d and increasing M; the method can maintain large global proposals without suffering from low acceptance rates.
The cost, of course, is the expense of increasing the iterations of ud and therefore the increased time required to generate a
proposal.

Suppose the current position of the Markov chain fYng is Yn ¼ x:

Algorithm 4 (HMC). The chain moves from Yn to Ynþ1 as follows:

1. Generate d independent Gaussian random variables with mean 0 and variance 1 (i.e.. a sample of r).
2. Evaluate ðy; r0Þ ¼ ðudÞ

Mðx; rÞ:
3. Set Ynþ1 ¼ y with probability
A ¼ min 1;
p0ðy; r0Þ
p0ðx; rÞ

� �
and Ynþ1 ¼ x with probability 1� A.
A.2. Parallel marginalization

It is well known that for many distributions, appropriately chosen marginal distributions exhibit reduced spatial corre-
lations. Spatial correlations often translate to long temporal correlations and slow convergence for MCMC methods. Recently
a new Markov chain Monte Carlo method has been introduced (see [9]) which uses approximate marginal distributions of p0

to accelerate MCMC sampling. Auxiliary Markov chains that sample approximate marginal distributions are evolved simul-
taneously with the Markov chain that samples the distribution of interest. By swapping their configurations, these auxiliary
chains pass information between themselves and with the chain sampling the original distribution. For details of the con-
struction the reader is directed to reference [9,24]. Parallel marginalization is closely related to work in [25,26]. It bears some
resemblance to the multigrid Monte Carlo method suggested in [27].

Suppose that, by the Metropolis-Hastings or any other method (see [20]), one can construct a Markov chain, Yn
0 2 Rd,

which has p0 as its stationary measure. That is, for two points x0; y0 2 Rd
Z
s0ðy0jx0Þp0ðx0Þ dx0 ¼ p0ðy0Þ;
where s0ðy0jx0Þ is the probability density of a move to fYnþ1
0 ¼ y0g given that fYn

0 ¼ x0g.
In order to take advantage of the shorter spatial correlations exhibited by marginal distributions of p0, a collection of low-

er dimensional Markov chains which approximately sample marginal distributions of p0 is considered. Let x0 be distributed
according to p0: In other words, x0 is the random variable to be simulated. Decompose the d components of x0 into two
subsets,
x0 ¼ ð�x0; ~x0Þ;



4328 J. Weare / Journal of Computational Physics 228 (2009) 4312–4331
where �x0 has d1 components and ~x0 has d� d1 components. Recall that the �x0 variables are distributed according to the mar-
ginal density,
�p0ð�x0Þ ¼
Z

p0ð�x0; ~x0Þd~x0; ð25Þ
and that given the value of the �x0 variables, the ~x0 variables are distributed according to the conditional density,
pð~x0j�x0Þ ¼
p0ð�x0; ~x0Þ

�p0ð�x0Þ
: ð26Þ
Now suppose that an approximation to the marginal distribution of the �x0 variables,
p1ð�x0Þ � �p0ð�x0Þ
is available. Let x1 2 Rd1 be independent of the x0 random variables and drawn from p1ð�x0Þ. Notice that x1 represents the
same physical variables as �x0 though its probability density is not the exact marginal density. One can continue in this
way to remove variables from the system by decomposing xl 2 Rdl into proper subsets as
xl ¼ ð�xl; ~xlÞ;
and defining xlþ1 2 Rdlþ1 to be independent of the fx0; . . . ;xlg random variables and drawn from an approximation plþ1 to
�plð�xlÞ. Clearly each xlþ1 represents fewer physical variables than xl.

Just as one can construct a Markov chain Yn
0 2 Rd to sample x0, one can also construct Markov chains Yn

l 2 Rdl to sample pl.
In other words, for each Yn

l choose a transition probability density sl; such that
Z
slðyljxlÞpl xlð Þdxl ¼ pl ylð Þ
for all i.
The chains Yn

l can be arranged in parallel to yield a larger Markov chain,
Yn ¼ ðYn
0; . . . ;Yn

L Þ 2 Rd � Rd1 � � � � � RdL :
The probability density of a move to fYnþ1 ¼ yg given that fYn ¼ xg for x; y 2 Rd � Rd1 � . . .� RdL is given by
sðyjxÞ ¼
YL

l¼0

slðyljxlÞ: ð27Þ
Since
Z
sðyjxÞ

YL

l¼0

plðxlÞ
 !

_x0 � � � dxL ¼
YL

l¼0

plðylÞ
the stationary distribution of Yn is
Pðx0; . . . ;xLÞ ¼ p0ðx0Þ � � �pLðxLÞ:
This chain would have no interaction between its various components and will therefore not equilibrate quickly. The next
step in the construction is to design a new set of transition kernels wl which allow for interactions between the chains sam-
pling from the sl and to thereby pass information from the rapidly equilibrating chains on the lower dimensional spaces
(large l) down to the chain on the original space (l ¼ 0). This is accomplished by swap moves. In a swap move between levels
l and lþ 1, a subset, �xl 2 Rdlþ1 , of the xl variables is exchanged with the xlþ1 2 Rdlþ1 variables. For the full chain, this swap takes
the form of a move from fYn ¼ xg to fYnþ1 ¼ yg where
x ¼ ð. . . ; ð�xl; ~xlÞ;xlþ1; . . .Þ
and
y ¼ ð. . . ; ðxlþ1; ~ylÞ; �xl; . . .Þ:
The ~yl variables are drawn from some reference density clð~xljxlþ1Þ and the ellipses represent components of Yn that remain
unchanged in the transition. In order to ensure that these swaps are undertaken in a way that preserves the detailed balance
condition for P they are accepted with probability
Al ¼min 1;
PðyÞcð~xlj�xlÞ

PðxÞcð~yljxlþ1Þ

� �
¼ min 1;

plðxlþ1; ~ylÞplþ1ð�xlÞcð~xlj�xlÞ
plð�xl; ~xlÞplþ1ðxlþ1Þcð~yljxlþ1Þ

� �
; ð28Þ
and reject the swap with probability 1� Al.
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Summarizing the discussion above, one swap step at level l of the PMMC algorithm proceeds as follows:

Algorithm 5 (PMMC swap step at level l). The chain moves from Yn to Ynþ1 as follows:

1. Let U be sampled from clð~xljxlþ1Þ:
2. Set
Ynþ1 ¼ ð. . . ; ðxlþ1;UÞ; �xl; . . .Þ
with probability
Al ¼min 1;
plðxlþ1;UÞplþ1ð�xlÞcð~xlj�xlÞ

plð�xl; ~xlÞplþ1ðxlþ1ÞcðUjxlþ1Þ

� �
; ð29Þ
and
Ynþ1 ¼ Yn ¼ ð. . . ; ð�xl; ~xlÞ; xlþ1; . . .Þ
with probability 1� Al.

For many applications the swap steps described above will be rejected with overwhelming probability rendering the pro-
cedure pointless. In general finding a reference density clð~xlj�xlÞ that yields reasonable swap acceptance rates is very difficult.
This problem is addressed by several modifications of the PMMC algorithm (see [24]). For example, it is possible to replace
the sampling from clð~xlj�xlÞ by MCMC sampling. However, these generalizations were found to be unnecessary for the appli-
cation in this paper and will not be pursued here.

A.3. PMMC and HMC in Algorithm 3

In this subsection, the discussion is specialized to the setting of Section 4. Steps 5 and 6 of Algorithm 3 require an MCMC
scheme which preserves the distribution
p0ðnðj;0Þ; . . . ; nðj;Nj � 1ÞÞ ¼ pðnðj; 0Þ; . . . ; nðj;Nj � 1ÞjxðjÞ;hðjþ 1ÞÞ

/ exp �
XNj�1

n¼0

nðj;nÞTnðj; nÞ
2

 !
� gðhðjþ 1Þ; xDðjþ 1; nÞÞÞ;
where, as in Section 4, xDðjþ 1; nÞÞ is the value of xðj;NjÞ determined by the recursion
xðj; nþ 1Þ ¼ xðj; nÞ þ ðFðxðj;nÞ þ DFðxðj; nÞÞ þ r
ffiffiffiffi
D
p

nðj; nÞÞ þ Fðxðj;nÞÞÞD
2
þ r

ffiffiffiffi
D
p

nðj;nÞ; 0 6 n 6 Nj;

xðj; 0Þ ¼ xðjÞ
for a specific value of xðjÞ and sequence nðj;0Þ; . . . ; nðj;Nj � 1Þ: In order to use PMMC within such a scheme one must first
define approximate marginal distributions pl of p0: To that end let nðj; �Þ denote the sequence ðnðj;0Þ; . . . ; nðj;Nj � 1ÞÞ and de-
fine the transformation R0 by the formula
R0nðj; �Þ ¼ ð�nðj; �Þ; ~nðj; �ÞÞ;
where, for n ¼ 0; . . . ;
Nj

2 � 1;
�nðj;nÞ ¼ nðj;2nþ 1Þ þ nðj;2nÞffiffiffi
2
p

and
~nðj;nÞ ¼ nðj;2nþ 1Þ � nðj;2nÞffiffiffi
2
p :
The choice of marginalization is motivated by the fact that each
ffiffiffiffiffi
Dj

p
nðj;nÞ represents an increment of the Brownian motion B

so that
 ffiffiffiffiffiffiffiffi
2Dj

q
�nðj;nÞ ¼

ffiffiffiffiffiffiffiffi
2Dj

q
nðj;nþ 1Þ þ nðj; nÞffiffiffi

2
p ¼ Bðsj þ ðnþ 2ÞDjÞ � Bðsj þ nDjÞ:
That is, the �n variables represent increments of the same realization of the Brownian motion over longer time intervals.
Now let n1ðj; �Þ be independent of nðj; �Þ and distributed according to the density
p1ðn1ðj;0Þ; . . . ; n1ðj;Nj=2� 1ÞÞ / exp �
XNj=2�1

n¼0

n1ðj;nÞ
Tn1ðj;nÞ
2

 !
gðhðjþ 1Þ; x2Dðjþ 1; n1ÞÞÞ;
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where x2Dðjþ 1; n1ÞÞ represents the value of xðj;Nj=2Þ determined by the recursion
xðj; nþ 1Þ ¼ xðj;nÞ þ ðFðxðj;nÞ þ 2DFðxðj;nÞÞ þ r
ffiffiffiffiffiffiffi
2D
p

n1ðj; nÞÞ þ Fðxðj;nÞÞÞDþ r
ffiffiffiffiffiffiffi
2D
p

n1ðj;nÞ; 0 6 n 6 Nj=2;
xðj; 0Þ ¼ xðjÞ
for a specific value of xðjÞ and the sequence n1ðj;0Þ; . . . ; n1ðj;Nj=2� 1Þ; i.e. determined by the same recursion as xDðj; nÞ but
with twice the time step (2D instead of D:). Thus the approximate marginal density is the conditional density obtained by
doubling the step size in the discretization of (19). The density p1 is an approximation to the marginal density of the
�nðj; �Þ variables.

These steps can be repeated for l ¼ 1; . . . ; L� 1 by letting nlðj; �Þ be independent of fnðj; �Þ; n1ðj; �Þ; . . . ; nl�1ðj; �Þg and distrib-
uted according to pl and for n ¼ 0; . . . ;

Nj

2lþ1 � 1; defining the variables
�nlðj; nÞ ¼
nlðj;2nþ 1Þ þ nlðj;2nÞffiffiffi

2
p ;
and
~nlðj; nÞ ¼
nlðj;2nþ 1Þ � nlðj;2nÞffiffiffi

2
p :
One can then define an approximation plþ1 to the marginal density of the �nlðj; �Þ variables by
plþ1ðnlþ1ðj;0Þ; . . . ; nlþ1ðj;Nj=2lþ1 � 1ÞÞ / exp �
XNj=2lþ1�1

n¼0

nlþ1ðj;nÞ
Tnlþ1ðj; nÞ
2

0
@

1
Agðhðjþ 1Þ; x2lþ1Dðjþ 1; nlþ1ÞÞÞ; ð30Þ
where x2lþ1Dðjþ 1; nlþ1ÞÞ represents the value of xðj;Nj=2lþ1Þ determined by the recursion
xðj; nþ 1Þ ¼ xðj;nÞ þ ðF xðj; nÞ þ 2lþ1DFðxðj;nÞÞ þ r
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1D

p
nlþ1ðj; nÞ

� �
þ Fðxðj;nÞÞÞ2lDþ r

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1D

p
nlþ1ðj; nÞ;

0 6 n 6 Nj=2lþ1;

xðj; 0Þ ¼ xðjÞ
for a specific value of xðjÞ and the sequence nlþ1ðj;0Þ; . . . ; nlþ1ðj;Nj=2lþ1 � 1Þ;
Recall that in the PMMC algorithm one must also choose a reference density clð~nlj�nlÞ; and evaluate the acceptance

probability
Al ¼min 1;
plðnlþ1;UÞplþ1ð�nlÞcð~nlj�nlÞ

plð�nl; ~nlÞplþ1ðnlþ1ÞcðUjnlþ1Þ

( )
; ð31Þ
where U is a sample from clð~nlj�nlÞ: The density of nl can be factored as,
plðnlÞ / qlð�nlÞqlð~nlÞgðhðjþ 1Þ;x2lDðjþ 1; nlÞÞ;
where the density ql is defined by
qlð�nlÞ / exp �
XNj=2l�1

n¼0

�nlðj;nÞT �nlðj; nÞ
2

0
@

1
A:
The choice clð~nlj�nlÞ ¼ qlð~nlÞ results in a particularly simple form of the PMMC acceptance probability. Indeed, notice that
plðnlþ1; ~nlÞ
clð~nljnlþ1Þ

¼ qlðnlþ1Þgðhðjþ 1Þ; x2lDðjþ 1;R�1
l ðnlþ1; ~nlÞÞÞ;
and
plð�nl; ~nlÞ
clð~nlj�nlÞ

¼ qlð�nlÞgðhðjþ 1Þ; x2lDðjþ 1;R�1
l ð�nl; ~nlÞÞÞ;
where the maps Rl are defined by
Rl nlðj; �Þ ¼ ð�nlðj; �Þ; ~nlðj; �ÞÞ: ð32Þ
Therefore, the PMMC acceptance probability, (31), becomes
Al ¼min 1;
plðnlþ1;UÞplþ1ð�nlÞcð~nlj�nlÞ

plð�nl; ~nlÞplþ1ðnlþ1ÞcðUjnlþ1Þ

( )

¼min 1;
gðhðjþ 1Þ; x2lþ1Dðjþ 1; �nlÞÞ

gðhðjþ 1Þ;x2lþ1Dðjþ 1; nlþ1ÞÞ
�

gðhðjþ 1Þ;x2lDðjþ 1;R�1
l ðnlþ1;UÞÞÞ

gðhðjþ 1Þ; x2lDðjþ 1;R�1
l ð�nl; ~nlÞÞÞ

( )
:
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In order to construct a Markov chain capable of exploring all configurations the PMMC swap steps must be combined with
transition densities sl that preserve the densities pl. The particular way in which the PMMC swap steps and sl are combined
can effect the equilibration time of the resulting chain. In the computations discussed in Section 6 each sl is the transition
density defined by the hybrid Monte Carlo algorithm described in the previous section (with the parameters announced in
Section 6). They are combined with swap steps via a recursion similar to the one defining the familiar multigrid W-cycle. The
state vector
n ¼ ðnðj; �Þ; n1ðj; �Þ; . . . ; nLðj; �ÞÞ
is evolved one step by calling pmmcð0; nÞ where the routine pmmc is defined as follows.

Algorithm 6. pmmcðl; nÞ
{
if l < L

for i ¼ 1;2
pmmc(l + 1,n);

end if

if l > 0
attempt a swap between levels l and l� 1 as follows:
generate a sample U from ql�1

setn ¼ ðn0; . . . ; nl�2; ðnl;UÞ; �nl�1; nlþ1; . . . ; nLÞ with probability

Al ¼min 1;
gðhðjþ1Þ;x

2lþ1D
ðjþ1;�nlÞÞ

gðhðjþ1Þ;x
2lþ1D

ðjþ1;nlþ1ÞÞ
� g hðjþ1Þ;x

2lD
ðjþ1;R�1

l ðnlþ1 ;UÞÞð Þ
g ðhðjþ 1Þ;x2lDðjþ 1;R�1

l ð�nl; ~nlÞÞÞ
� �

end if

evolve nl one step according to sl;
}.
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